首页> 外文OA文献 >Perceptual Generative Adversarial Networks for Small Object Detection
【2h】

Perceptual Generative Adversarial Networks for Small Object Detection

机译:用于小目标检测的感知生成对抗网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Detecting small objects is notoriously challenging due to their lowresolution and noisy representation. Existing object detection pipelinesusually detect small objects through learning representations of all theobjects at multiple scales. However, the performance gain of such ad hocarchitectures is usually limited to pay off the computational cost. In thiswork, we address the small object detection problem by developing a singlearchitecture that internally lifts representations of small objects to"super-resolved" ones, achieving similar characteristics as large objects andthus more discriminative for detection. For this purpose, we propose a newPerceptual Generative Adversarial Network (Perceptual GAN) model that improvessmall object detection through narrowing representation difference of smallobjects from the large ones. Specifically, its generator learns to transferperceived poor representations of the small objects to super-resolved ones thatare similar enough to real large objects to fool a competing discriminator.Meanwhile its discriminator competes with the generator to identify thegenerated representation and imposes an additional perceptual requirement -generated representations of small objects must be beneficial for detectionpurpose - on the generator. Extensive evaluations on the challengingTsinghua-Tencent 100K and the Caltech benchmark well demonstrate thesuperiority of Perceptual GAN in detecting small objects, including trafficsigns and pedestrians, over well-established state-of-the-arts.
机译:由于小物体的分辨率低和噪声大,因此检测小物体的挑战非常艰巨。现有的对象检测管线通常通过学习多尺度上所有对象的表示来检测小对象。但是,这种特殊架构的性能提升通常仅限于偿还计算成本。在这项工作中,我们通过开发一种单一体系结构解决了小物体检测问题,该体系结构在内部将小物体的表示提升为“超分辨”的表示,实现了与大物体相似的特性,因此更具判别性。为此,我们提出了一种新的感知生成对抗网络(Perceptual GAN)模型,该模型通过缩小小对象与大对象之间的表示差异来改善小对象的检测。具体来说,它的生成器学习将感知到的小对象的较差表示转换为与真实大对象相似的超分辨对象,以欺骗竞争的鉴别器。与此同时,其鉴别器与生成器竞争以识别生成的表示并施加额外的感知要求小物体的表示必须有利于检测-在生成器上。对具有挑战性的清华腾讯100K和加州理工学院的基准进行了广泛的评估,充分证明了感知GAN在检测到的最先进技术上,在检测包括交通标志和行人在内的小物体方面的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号